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ABSTRACT

Recently, there has been a trend of investigating weight-
ing/pooling strategies in the research of image quality assess-
ment (IQA). The saliency maps, information content maps
and other weighting strategies were reportedly to be able to
amend performance of IQA metrics to a sizable margin. In
this work, we will show that local structural similarity is itself
an effective yet simple weighting scheme leading to substan-
tial performance improvement of IQA. More specifically, we
propose a Structural similarity Weighted SSIM (SW-SSIM)
metric by locally weighting the SSIM map with local struc-
tural similarities computed using SSIM itself. Experimental
results on LIVE database confirm the performance of SW-
SSIM as compared to some major weighting/pooling type of
IQA methods, such as MS-SSIM, WSSIM and IW-SSIM. We
would like to emphasize that our SW-SSIM is merely a s-
traightforward realization of a more general framework of
locally weighting IQA metric using itself as similarity mea-
sures.

Index Terms— Image quality assessment (IQA), salien-
cy, structural similarity, pooling

1. INTRODUCTION

Image quality assessment (IQA) plays a significant role in im-
age processing. Perceptual IQA metrics can assist the devel-
opment and optimization of image acquisition, communica-
tion, compression, storage and display systems. Generally,
image quality assessment can be divided into two kinds ac-
cording to the application scenarios. The first kind of methods
are the so-called subjective approaches that are generally rec-
ognized as the ultimate image quality gauge. The other kind is
objective assessment aiming at automatic prediction of human
response to image quality. Due to the fact that the subjective
assessment is accompanied with some remarkable drawback-
s, such as being time-consuming, expensive and laborious,
there has been an increasing interest in developing objective
IQA metrics. Depending on the availability of reference im-
ages, objective IQA algorithms can be further classified into
three categories: namely the well-known full-reference (FR),
reduced-reference (RR) and no-reference (NR) algorithms. In
this paper, we focus on FR image quality metric.

The full-reference IQA approaches generally adopt a two-
stage method: local distortion/fidelity measurement and pool-
ing. Following the great success of SSIM [1] and VIF [2],
local distortion/fidelity type of methods have attracted a great
deal of attention from researchers. Meanwhile, a number of
weighting/pooling strategies [3]-[10] also have been proposed
for the second stage. Considering the fact that the perceived
quality of image highly relies upon the scale at which the im-
age is observed, MS-SSIM [3] was exploited by incorporating
various viewing conditions. Through incorporating properties
of the human visual system (HVS) into image quality metrics,
WSSIM [8] was developed as a saliency map weighting based
approach. To sum up, the basic idea of [3]-[8] is a common
hypothesis that the pooling strategy should take into consid-
eration the human visual fixation or visual region-of-interest
detection.

However, as can be seen from Fig. 2-3, the saliency map-
s computed by visual attention model (VAM), or even those
recorded directly by eye-tracker [8], do not always capture
the regions with the most “apparent” distortions. Clearly,
the reference images alone cannot generate faithful estimates
of the saliency features. Therefore, a newly proposed ap-
proach SNW-SSIM [9] appropriately integrated saliency fea-
tures from both the original and distorted images based on the
method of [11] to form the final saliency map. Unfortunately,
this new saliency map based weighting strategy only brought
limited improvement of prediction accuracy for IQA.

Recently, statistical information theory inspired IW-SSIM
[10] has achieved very good performance and is currently the
de facto benchmark for pooling-type of IQA methods. It is
both interesting and intriguing to realize that the root of IW-
SSIM, namely, the information content weighting (IW) map
is originated from the IQA metric of VIF [2]. It is a nat-
ural speculation that this IQA based pooling strategy is in-
deed very effective in improving the performance of the IQA
metrics themselves. In our research, it was found that the
weighting map based on the notion of local similarity esti-
mated directly using IQA metrics can be very useful for im-
proving the prediction accuracy of IQA. With this observa-
tion, we design a low complex and high performance Struc-
tural similarity based Weighting (SW) strategy, and name the
corresponding IQA method the Structural similarity Weight-
ed SSIM (SW-SSIM).



The remainder of this paper is organized as follows. Sec-
tion 2 first provides the detailed description of the proposed
SW-SSIM paradigm, and then justifies the effectiveness of
our SW map by comparing different major saliency maps. In
Section 3, experimental results using the LIVE database [12]
are reported and analyzed. Finally, some concluding remarks
are given in Section 4.

2. THE PROPOSED IMAGE QUALITY METRIC

While the most prevailing weighting/pooling scheme for IQA
methods are those based on the visual attention mechanisms
and saliency features, in this research, we investigate the pos-
sibility of weighting with local similarity measures quantified
by the IQA method itself. More specifically, we proposed to
compute the local structural similarities through applying S-
SIM to local image blocks and further weight the SSIM map
with the local similarity.

2.1. The Proposed SW-SSIM Metric

The first part of the proposed SW-SSIM metric is a structural
similarity weighting map that is evaluated by a modified S-
SIM used on local blocks. The weighting coefficients for a
block is estimated by calculating the structural similarity be-
tween it and its eight neighboring blocks.

Fig. 1. Illustration of structural similarity weighting strategy
for a block Bm,n with the size of M ×M . Its surrounding
eight blocks are used to compute the structural similarity as
the weighting value of the current block Bm,n.

For a block Bm,n with the size of M ×M is located in an
image. Its weighting coefficients ν(m,n,N) are computed as
follows:

ν(m,n,N) =

∑8
k=1 νs(k) ·ms(k,N)∑8

k=1 νs(k)
(1)

where N is an additional variable to be defined later. νs(k)
are eight constant model parameters. k = {1...4} indicate
top, right, bottom and left light gray blocks, and k = {5...8}
indicate top-right, bottom-right, bottom-left and top-left dark
gray blocks, as shown in Fig. 1.

The measures of similarity degree ms(k,N) between
Bm,n and one of its eight neighboring blocks can be evalu-
ated by

ms(1, N) = SSIM(Bm,n, Bm−1,n, N)

ms(2, N) = SSIM(Bm,n, Bm,n+1, N)

ms(3, N) = SSIM(Bm,n, Bm+1,n, N)

ms(4, N) = SSIM(Bm,n, Bm,n−1, N)

ms(5, N) = SSIM(Bm,n, Bm−1,n+1, N)

ms(6, N) = SSIM(Bm,n, Bm+1,n+1, N)

ms(7, N) = SSIM(Bm,n, Bm+1,n−1, N)

ms(8, N) = SSIM(Bm,n, Bm−1,n−1, N) (2)

where SSIM is a revised version of [1] to be defined as fol-
lows. Consider X and Y to be two matrices with the same
size. Let µX , µY , σ2

X , σ2
Y and σXY be the means, variances

and covariance between X and Y . The luminance, contrast
and structural similarities are estimated as

l(X,Y,N) =
2µXµY + C1

µ2
X + µ2

Y + C1
(3)

c(X,Y,N) =
2σXσY + C2

σ2
X + σ2

Y + C2
(4)

s(X,Y,N) =
σXY + C3

σXσY + C3
(5)

where C1, C2 and C3 are small constants used to avoid insta-
bility when the denominators are very close to zero. Here we
use a N × N circular-symmetric Gaussian weighting func-
tion w = {wij |i, j = 1, . . . , N}, with standard deviation of
1.5 samples, normalized to unit sum (

∑
N
i=1

∑
N
j=1wij = 1).

The statistics µX , σ2
X and σXY can be computed by

µX =
1

N2

N∑
i,j=1

wijxij (6)

σ2
X =

1

N2 − 1

N∑
i,j=1

wij(xij − µX)2 (7)

σXY =
1

N2 − 1

N∑
i,j=1

wij(xij − µX)(yij − µY ) (8)

and µY and σ2
Y have the similar definitions as Eq. (6)-(7).

Then, the SSIM MAP is defined as the product of the lu-
minance, contrast and structural similarities:

SSIM MAP (X,Y,N)

= l(X,Y,N) · c(X,Y,N) · s(X,Y,N). (9)
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Fig. 2. The first example of comparison of different saliency maps (the whiter the regions are, the larger the saliency is): (a)
Reference image; (b) JPEG compressed image; (c) White noise image; (d) SNW map [9] of (b); (e) SNW map of (c); (f) Eye-
tracking based visual attention map [8] of (b)-(c); (g) IW map [10] of (b); (h) IW map of (c); (i) The proposed SW map of
(b)-(c). Notice that eye-tracking based visual attention map and our SW map have the same results for (b) and (c) due to their
common reference image.

And the corresponding SSIM index evaluating the overall im-
age quality is defined by

SSIM(X,Y,N) =
1

P

P∑
p=1

SSIM MAP (xp, yp, N) (10)

with P being the number of local windows in the image.
Besides, by first downsampling reference image R and

distorted imageD with scale transform coefficientZ followed
by SSIM metric, a simple and empirical method [13] is also
took into account:

SSIMZ = SSIM(FZ(R), FZ(D), N ′) (11)

where FZ(·) is a downsampling function given by [13], and
its scale Z can be evaluated by

Z = max(1, round(min(H,W )/256)) (12)

with H and W being the height and width of the reference
image, respectively.

Eventually, the proposed SW-SSIM metric is given by ap-
plying SW map weighting SSIM MAP:

SW -SSIM(FZ(R), FZ(D))

= SW -SSIM(R′, D′)

=

∑
i,j SWi,j · SSIM MAP (r′i,j , d

′
i,j , N

′)∑
i,j SWi,j

(13)

where

SWi,j = 1− ν(di/Me, dj/Me, N) (14)

satisfying that m = di/Me and n = dj/Me.
All the parameters used in our paradigm are provided as

follows: νs(k = 1...4) = 1, νs(k = 5...8) = 0.25,N = 7, N ′ =
11, and M = 4.
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Fig. 3. The second example of comparison of different saliency maps (the whiter the regions are, the larger the saliency is):
(a) Reference image; (b) Gaussian blur image; (c) White noise image; (d) SNW map [9] of (b); (e) SNW map of (c); (f) Eye-
tracking based visual attention map [8] of (b)-(c); (g) IW map [10] of (b); (h) IW map of (c); (i) The proposed SW map of
(b)-(c). Notice that eye-tracking based visual attention map and our SW map have the same results for (b) and (c) due to their
common reference image.

2.2. Comparison of Different Weighting Strategy

We have illustrated in Fig. 2-3 the results of different weight-
ing strategy for two original images each subject to two differ-
ent types of distortion (JPEG compression and white noise in-
jection in Fig. 2 and Gaussian blur and white noise distortion
in Fig. 3). It can be observed that the SNW saliency map (Fig.
2-3 (d)-(e)) using a classical bottom-up saliency model [11]
cannot effectively capture the most distortion regions. Still, it
is noticed that the visual attention map (Fig. 2-3 (f)) recorded
from eye-tracking experiments [8] still cannot catch the most
distorted areas. On the other hand, the VIF metric inspired
IW map (Fig. 2-3 (g)-(h)) in [10] can capture part of the most
distorted regions. And our proposed SW map (Fig. 2-3 (i)) in-
deed apprehends most of the apparent distorted regions and is
therefore expected to improve the IQA more effectively. For
instance, see one obvious example in the right-middle part in
Fig. 2 (b). Only IW-SSIM and our proposed metric are ca-
pable of detecting the distortions, as shown in Fig. 2 (g), (i).

Table 1. Comparison of different scores for Fig. 2-3 (b)-(c) using
subjective and objective pooling-type of methods, including the re-
sults of DMOS, SNW-SSIM, WSSIM, IW-SSIM, SW-SSIM, and the
most two popular PSNR and SSIM methods.

Comparison of Different Scores
Algorithm Fig. 2 (b) Fig. 2 (c) Fig. 3 (b) Fig. 3 (c)
DMOS 78.168 55.536 57.781 51.670
PSNR 24.906 21.977 29.726 27.619
SSIM 0.8351 0.6585 0.9192 0.8019
SNW-SSIM 0.8675 0.8190 0.9061 0.8594
WSSIM 0.7036 0.4586 0.8595 0.5284
IW-SSIM 0.8520 0.8294 0.9328 0.9014
SW-SSIM 0.7936 0.8191 0.8620 0.8742

Since the HVS is not working in a pixel by pixel manner in ac-
cessing image qualities, the proposed block-based SW-SSIM
metric outperforms the point-wise metric of IW-SSIM.



Table 1 also tabulates some quality scores for Fig. 2-3
(b)-(c), including the above-mentioned pooling-type of algo-
rithms, differential mean opinion scores (DMOS), and the
popular PSNR and SSIM methods. Among the IQA meth-
ods in the test, only our proposed metric gives Fig. 2 (c) a
score of higher than Fig. 2 (b), which corresponds to the fac-
t that Fig. 2 (b) has larger DMOS than Fig. 2 (c) (i.e. the
image quality of Fig. 2 (c) is higher than that of Fig. 2 (b)).
Similar example can be found in Fig. 3 (b) and (c). Note that
we only consider the comparison between Fig. 2 (b) and (c)
(or Fig. 3 (b) and (c)), because the distorted images in each
pair are from the same reference image, which can overcome
the influence of different image contents on the accuracy of
IQA metrics. So, we have a reason to believe that our pro-
posed method is further more correlated with the DMOS than
all other IQA metrics used in our test.

3. EXPERIMENTAL RESULTS

Mappings of the scores of eight metrics PSNR, SSIM [1], S-
SIM’ [13], MS-SSIM, SNW-SSIM, WSSIM, IW-SSIM and
the proposed SW-SSIM methods to subjective scores are ob-
tained using nonlinear regression with a four-parameter logis-
tic function as suggested by VQEG [14]:

q(ε) =
γ1 − γ2

1 + exp(− (ε−γ3)
γ4

)
+ γ2 (15)

with ε and q(ε) being the input score and the mapped score,
respectively. The free parameters γ1 to γ4 are to be deter-
mined during the curve fitting process.

This paper applies three commonly used performance
metrics, Pearson Linear Correlation Coefficient (PLCC), S-
pearman Rank-Order Correlation Coefficient (SROCC) and
Root Mean-Squared Error (RMSE), to further compare the
competitive SW-SSIM metric and the other seven methods
(i.e., PSNR, SSIM, SSIM’, MS-SSIM, SNW-SSIM, WSSIM,
and IW-SSIM) on the LIVE database. Table 2-4 illustrate

Table 2. Pearson Linear Correlation Coefficient (PLCC) values (af-
ter nonlinear regression) of PSNR, SSIM, SSIM’, MS-SSIM, SNW-
SSIM, WSSIM, IW-SSIM and the proposed SW-SSIM methods on
whole LIVE database (779 images) and five data sets of different
distortion categories.

Pearson Linear Correlation Coefficient (PLCC)
Algorithm JP2K JPEG WN Gblur FF All
PSNR 0.899 0.887 0.985 0.795 0.889 0.870
SSIM [1] 0.934 0.947 0.964 0.907 0.942 0.901
SSIM’ [13] 0.966 0.978 0.969 0.946 0.949 0.938
MS-SSIM 0.969 0.981 0.972 0.953 0.920 0.933
SNW-SSIM 0.962 0.978 0.973 0.948 0.938 0.941
WSSIM 0.959 0.967 0.974 0.926 0.954 0.921
IW-SSIM 0.971 0.981 0.968 0.962 0.931 0.942
SW-SSIM 0.974 0.981 0.972 0.970 0.955 0.950

Table 3. Spearman Rank-Order Correlation Coefficient (SROC-
C) values (after nonlinear regression) of PSNR, SSIM, SSIM’, MS-
SSIM, SNW-SSIM, WSSIM, IW-SSIM and the proposed SW-SSIM
methods on whole LIVE database (779 images) and five data sets of
different distortion categories.

Spearman Rank-Order Correlation Coefficient (SROCC)
Algorithm JP2K JPEG WN Gblur FF All
PSNR 0.895 0.880 0.985 0.783 0.890 0.875
SSIM [1] 0.935 0.944 0.962 0.894 0.941 0.910
SSIM’ [13] 0.961 0.976 0.969 0.952 0.954 0.947
MS-SSIM 0.965 0.979 0.972 0.958 0.931 0.944
SNW-SSIM 0.958 0.975 0.980 0.948 0.950 0.952
WSSIM 0.953 0.963 0.968 0.935 0.956 0.929
IW-SSIM 0.964 0.980 0.966 0.972 0.944 0.956
SW-SSIM 0.967 0.982 0.980 0.972 0.963 0.961

Table 4. Root Mean-Squared Error (RMSE) values (after nonlinear
regression) of PSNR, SSIM, SSIM’, MS-SSIM, SNW-SSIM, WS-
SIM, IW-SSIM and the proposed SW-SSIM methods on whole LIVE
database (779 images) and five data sets of different distortion cate-
gories.

Root Mean-Squared Error (RMSE)
Algorithm JP2K JPEG WN Gblur FF All
PSNR 11.01 14.65 4.718 11.44 13.03 13.46
SSIM [1] 8.534 9.907 6.845 8.964 9.496 11.83
SSIM’ [13] 6.473 6.502 6.811 6.115 8.964 9.445
MS-SSIM 6.363 5.999 6.569 5.855 9.703 9.306
SNW-SSIM 6.889 6.552 6.460 5.876 9.828 9.219
WSSIM 7.079 8.029 6.342 6.961 8.538 10.59
IW-SSIM 6.034 6.111 6.931 5.148 10.41 9.131
SW-SSIM 5.758 6.117 6.596 4.651 8.468 8.557

their performance results, and the scatter plots of SW-SSIM
on five different distortion categories of data sets and the w-
hole LIVE database are shown in Fig. 4. Clearly, our algorith-
m attains better result than most of the existing pooling-type
of IQA methods used in our research.

Besides, we want to emphasize that the proposed SW-
SSIM method is more valid for the current hot topic of Man-
agement Information Systems (MIS), especially for video
coding. With the recent emergence of high-definition/ultra-
high-definition TV programs, human beings have succeed in
pushing the multimedia entertainment to a new level. How-
ever, in the meantime, more powerful techniques for video
coding, quality assessment and etc are highly required. Note,
SW-SSIM is performing in a blockwise manner, which makes
it suitable for parallel processing to achieve high executive
speed. And moreover, our metric has very high portability as
it is solely based on SSIM that has been inserted into many
existing video processing systems. By taking the remark-
able superior performance of SW-SSIM into consideration,
we therefore believe that our approach has great potentials to
be directly or indirectly used in the video quality assessment
of high-definition/ultra-high-definition TV programs.



Fig. 4. Scatter plots of DMOS vs. SW-SSIM on all the LIVE
database and five various distortion types of data sets.

4. CONCLUSION

In this paper, we propose a new weighting/pooling strategy
for IQA based on local structural similarity measure com-
puted using the IQA itself. We further develop a Structural
similarity Weighting SSIM (SW-SSIM) image quality met-
ric with prediction accuracy outperforming most of exist-
ing weighting/pooling type of IQA algorithms on the LIVE
database. We want to point out that our method is quite fitted
to be applied in multimedia entertainment, one major direc-
tion of management information systems, due to its high pre-
diction accuracy, parallel operation of the blockwise manner,
and easy portability in video processing system. In addition,
note that the work in this paper is merely an easy realization
of a more general framework, namely locally weighing IQA
metrics using IQA metrics themselves. Other more delicate
combinations are expected to bring even higher performance
improvement. The research on this direction is largely war-
ranted not only by the simplicity and elegancy of the proposed
framework, but also by the encouraging performance gain ob-
tained in the tests reported in this paper.
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